
1

A Compositional Knowledge Level Process Model

of Requirements Engineering*

Daniela E. Herlea1, Catholijn M. Jonker2, Jan Treur2, Niek J.E. Wijngaards1,2

1 Software Engineering Research Network, University of Calgary,

2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada

 Email: danah@cpsc.ucalgary.ca

2 Department of Artificial Intelligence, Vrije Universiteit Amsterdam,

De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands

URL: http://www.cs.vu.nl/~{jonker,treur,niek} Email: {jonker,treur,niek}@cs.vu.nl

Abstract.

In current literature few detailed process models for Requirements Engineering are

presented: usually high-level activities are distinguished, without a more precise

specification of each activity. In this paper the process of Requirements Engineering has

been analyzed using knowledge-level modelling techniques, resulting in a well-specified

compositional process model for the Requirements Engineering task. This process model is

considered to be a generic process model: it can be refined (by instantiation or specialisation)

into a process model for a specific kind of Requirements Engineering process.

1 Introduction

Requirements Engineering (RE) addresses the development and validation of methods

for eliciting, representing, analyzing, and confirming system requirements.

Requirements Engineering further concerns methods for transforming requirements into

specifications for design and implementation. A requirements engineering process is

characterised as a structured set of activities needed to create and maintain a systems

requirements document (Davis, 1993; Kontonya and Sommerville, 1998; Loucipoulos

and Karakostas, 1995; Martin, 1988; Sommerville and Sawyer, 1997). To obtain insight

in this process, a description of the activities is needed, the inputs and outputs to/from

each activity are to be described. Furthermore, tools are needed to support the

requirements engineering process.

*
 A preliminary and shorter version of this paper was presented at the IEA/AIE’99 conference, see

2

 No standard and generally agreed requirements engineering process exists. In

(Kontonya and Sommerville, 1998; Sommerville and Sawyer, 1997) the following

activities are considered to be core activities in the process:

• Requirements elicitation, through which the requirements are discovered by

consulting the stakeholders of the system to be developed.

• Requirements analysis and negotiation, through which requirements are

analyzed in detail for conflict, ambiguities and inconsistencies. The agreement of

the stakeholders on a set of system requirements is essential.

• Requirements validation, through which the requirements are checked for

consistency and completeness.

• Requirements documentation, through which the requirements are maintained

and motivated.

Aside from the above, in (Dubois, Du Bois, and Zeippen, 1995) also the activity

modelling is distinguished. Loucipoulos and Karakostas (1995) distinguish elicitation,

specification and validation as the main activities. Other approaches in the literature

distinguish activities, like requirements determination (Yadav, Bravoco, Chatfield, and

Rajkumar, 1988). These activities overlap with some of the activities mentioned above.

 Various knowledge modelling methods and tools have been developed, for an

overview see (Brazier and Wijngaards, 1997), and applied to complex tasks and

domains. The application of a knowledge modelling method to the domain of

Requirements Engineering in this paper has resulted in a compositional process model

of the task of Requirements Engineering, based on the compositional knowledge

modelling method DESIRE (Design and Specification of Interacting Reasoning

components); cf. (Brazier, Jonker and Treur, 1998). DESIRE is based on a formal

specification language and is supported by graphical tools. For an account of the formal

semantics of the underlying language, see (Brazier, Treur, Willems, and Wijngaards,

1999).

 In the approach presented in this paper requirements and scenarios are considered

equally important; see also (Herlea, Jonker, Treur and Wijngaards, 1999c) .

Requirements describe, for example, functional and behavioural properties of the

(Herlea, Jonker, Treur, and Wijngaards, 1999b).

3

system to be built, while scenarios describe use-cases of interactions between a user and

the system; e.g., (Erdmann and Studer, 1998; Weidenhaupt, Pohl, Jarke, and Haumer,

1998). Both requirements and scenarios can be expressed in varying degrees of

formality: from informal, to a semi-formal structured natural language description, to a

formal description using temporal logic. Another distinction with other approaches to

Requirements Engineering modelling is the possibility to introduce levels of process

abstraction within the system being designed on the basis of the Requirements

Engineering process results. Requirements and scenarios on one level of abstraction, are

related to requirements and scenarios at the next lower level of abstraction; the

requirements and scenarios at a level of abstraction ‘realise’ the requirements and

scenarios at the next higher level of abstraction. These refinement relations between

requirements play an important role in a compositional design process.

 The compositional knowledge modelling method DESIRE has been applied to obtain

the formal process model of the task of Requirements Engineering. The obtained

process model is intended to be a generic model. A generic model is generic with

respect to processes or tasks and knowledge structures. Genericity with respect to

processes or tasks refers to the level of process abstraction: a generic model abstracts

from processes at lower levels. A more specific model with respect to processes is a

model within which a number of more specific processes, at a lower level of process

abstraction are distinguished. This type of refinement is called specialisation. Genericity

with respect to knowledge refers to levels of knowledge abstraction: a generic model

abstracts from more specific knowledge structures. Refinement of a model with respect

to the knowledge in specific domains of application, is refinement in which knowledge

at a lower level of knowledge abstraction is explicitly included. This type of refinement

is called instantiation.

 In the literature, software environments supporting Requirements Engineering are

described, but no knowledge level model is specified in detail. The model introduced

here has been specified at an implementation-independent conceptual and logical level.

It provides a detailed design for Requirements Engineering processes and for

implementation of supporting software environments. A generic process model for the

task of Requirements Engineering has the main advantage of reuse and adaptability to

specific circumstances. Reuse as such, reduces the time, expertise and effort needed to

construct process models for Requirements Engineering. Which processes and

4

knowledge structures are applicable in a given Requirements Engineering process

depends on the situation. Whether a process can be used immediately, or whether

instantiation, specialisation, and/or modification is required, depends on the desired

properties of the Requirements Engineering process.

 The compositional process model constructed for the Requirements Engineering

task is described in detail in Sections 4 to 9. The compositional design method DESIRE is

described in Section 2. In Section 3 a case study is introduced that was undertaken to

test our ideas on the process model. In Section 4.3 some more details of this case study

are discussed. A discussion is presented in Section 10. Appendix A can be used as an

index to the paper.

2 Design of Compositional Process Models

The process model specification for requirements engineering, described in this paper,

has been developed using the compositional development method DESIRE for single-

and multi-agent systems (Design and Specification of Interacting Reasoning

components); cf. (Brazier, Jonker, and Treur, 1998). Within this method knowledge of

the following three types is distinguished:

• process composition,

• knowledge composition, and

• the relation between process composition and knowledge composition.

The development of a single- or multi-agent system is supported by graphical design

software with an underlying formal language. Translation to an operational system is

straightforward; in addition to the graphical design tools the software environment

includes implementation generators with which specifications can be translated into

executable code of a prototype system. Formal semantics can be found in (Brazier et al.,

1999). The three types of knowledge are discussed in more detail below.

2.1 Process Composition

Process composition identifies the relevant processes at different levels of process

abstraction, and describes how a process can be defined in terms of, or ‘is composed of’

lower level processes.

5

2.1.1 Identification of Processes at Different Levels of Abstraction

Processes can be described at different levels of abstraction; for example, the process of

the multi-agent system as a whole, processes defined by individual agents and the

external world, and processes defined by task-related components of individual agents.

The identified processes are modelled as components. For each process the input and

output information types are specified, i.e., the allowed type of information that can be

used in the interfaces of the process. The identified levels of process abstraction are

modelled as abstraction/specialisation relations between components: components may

be composed of other components or they may be primitive. Primitive components may

be either reasoning components, or components capable of performing tasks such as

calculation, information retrieval, optimisation. For primitive reasoning components,

based on a knowledge base, within the software environment a sophisticated inference

engine is available. The levels of process abstraction provide process hiding at each

level.

2.1.2 Composition of Processes

The way in which processes at one level of abstraction are composed of processes at the

adjacent lower abstraction level is called composition. This composition of processes is

described by a specification of the possibilities for information exchange between

processes (static view on the composition), and a specification of task control

knowledge used to control processes and information exchange (dynamic view on the

composition).

2.2 Knowledge Composition

Knowledge composition identifies the knowledge structures at different levels of

knowledge abstraction, and describes how a knowledge structure can be defined in

terms of lower level knowledge structures. The knowledge abstraction levels may

correspond to the process abstraction levels, but this is often not the case.

2.2.1 Identification of knowledge structures at different abstraction levels

The two main structures used as building blocks to model knowledge are: information

types and knowledge bases. Knowledge structures can be identified and described at

different levels of abstraction. At higher levels details can be hidden. An information

6

type defines an ontology (or lexicon, vocabulary) to describe objects or terms, their

sorts, and the relations or functions that can be defined on these objects. Information

types can graphically be represented on the basis of conceptual graphs and logically in

order-sorted predicate logic. A knowledge base defines a part of the knowledge that is

used in one or more of the processes. Knowledge is represented by formulae in order-

sorted predicate logic, which can be normalised by a standard transformation into if-

then rules.

2.2.2 Composition of Knowledge Structures

Information types can be composed of more specific information types, following the

principle of compositionality discussed above. Similarly, knowledge bases can be

composed of more specific knowledge bases. The compositional structure is based on

the different levels of knowledge abstraction distinguished, and results in information

and knowledge hiding.

2.3 Relation between Process Composition and Knowledge Composition

Each process in a process composition uses knowledge structures. Which knowledge

structures are used for which processes is defined by the relation between process

composition and knowledge composition.

3 An Example Case Study

The example domain for the case study is the development of a multi-agent system that

keeps its human users informed with respect to their interests and the rapidly changing

available information on the World Wide Web. The task of the multi-agent system is to

inform each of its users on information available (e.g., papers) on the World Wide Web

that is within their scope of interest. The sources of information are the World Wide

Web, but also information providing agents that operate on the World Wide Web, for

example, agents related to Web sites of research groups, which announce new papers

included in their web-site.

 To get an impression, the following list shows the initially elicited requirements R1

to R9, including their sub-divisions a-d; this is taken from the requirements document.

For traceability, numbers between “{” and “}” refer to parts of the original interview.

7

 R1 The system shall service the individual users of the group. {9}

 R2 The system shall behave towards a user based on that user’s research interests and topics. {9}

 R3 The system shall have the task of searching information on the internet. {1, 10}

a. The user shall be able to input a “search topic”.

b. The system shall provide search results from the internet.

c. The search results are related to (depends on) the “search topic”.

d. Search results are provided after the user inputs a search topic.

 R4 The system shall have the task of keeping the user ‘aware’ of modifications to information on

 the Internet. {4, 10}

a. The user shall be able to input an “awareness topic”.

b. The system shall notify the user about modifications to the information on this

awareness topic.

c. The notification shall be done after these modifications (found at c) become available

on the internet.

 R5 a. The user shall be able to specify times when s/he cannot be disturbed. {13}

 b. The system shall not disturb the user at the specified times.

 R6 a. The system shall be able to suggest non-requested information {14}

 b. Suggestion of non-requested information is based on: learning from overlapping

 research interests (among users of the System). {14}

 R7 a. The user shall be able to constrain the suggested information from the system. {15}

 b. The system shall adhere to the constraints when suggesting information.

 R8. The system shall be able to save search topics and awareness topics results and to delete

 results.

 R9. The system shall be able to authenticate the users.

In Section 4.3 it will be discussed in more detail how some of these requirements were

reformulateed during the Requiurements Engineering process.

8

4 Composition of Requirements Engineering

An overview of the different processes and their abstraction levels within the process

Requirements Engineering is shown in Appendix A; this overview can also be used as an

index for the paper. In subsequent sections for each of the composed processes their

process composition and knowledge composition, are specified.

 Within each of the sections one level of process abstraction is described. The

composition of Requirements Engineering is described in Section 4. The composition of

Elicitation is described in Section 5. The composition of Manipulation of Requirements and

Scenarios is described in Section 6. The composition of Maintenance of Requirements

and Scenarios Specification is described in Section 7. The composition of Manipulation of

Requirements is described in Section 8. The composition of Manipulation of Scenarios is

similar to the composition of Manipulation of Scenarios and therefore not described in

detail in this paper. The composition of Reformulation of Requirements is described in

Section 9.

 The process of Requirements Engineering is described in two phases: first is process

composition, then composition of knowledge structures related to this process. The

information types identified in the process identification in Section 4.1 are described in

detail in the knowledge composition in Section 4.2. Knowledge bases have not been

specified; they depend on specific application domains. The reader may already take

into account Section 4.3, where, as an ilustration, for some example requirements it is

shown how they were reformulated during the process.

4.1 Process Composition of Requirements Engineering

Following the structure shown in Section 2, the process composition of requirements

engineering is described by its levels of process abstraction, identification of processes,

and composition relation between processes.

 The first two levels of process abstraction for requirements engineering are shown

in Figure 1. The processes elicitation, manipulation of requirements and scenarios, and

maintenance of requirements and scenarios specification are distinguished within the process

requirements engineering.

9

Requirements
Engineering

elicitation
manipulation of

requirements and
scenarios

maintenance of
requirements and

scenarios specification

Figure 1. First level of process abstraction within process Requirements Engineering.

The process elicitation provides initial problem descriptions, requirements and scenarios

elicited from stakeholders, as well as domain ontologies and knowledge acquired in the

domain. The process manipulation of requirements and scenarios attempts to resolve

ambiguities in requirements and scenarios, and identifies and possibly removes

requirements not supported by stakeholders, and inconsistent requirements and

scenarios. This process reformulates informal requirements and scenarios, to more

structured semi-formal requirements and scenarios, and, if needed, finally to formal

requirements and scenarios. It also provides relationships among and between

requirements and scenarios. The process maintenance of requirements and scenarios

specification maintains the documents in which the information requirements and

scenarios are described, including information on traceability.

 Each of the processes depicted in Figure 1 can be characterized in more detail in

terms of their interfaces (input and output information types), as shown in Table 1.

process input information type output information type

elicitation • requirements and scenarios

information

• elicitation results

• elicitation basic material

manipulation of requirements and

scenarios

• elicitation results • requirements and

scenarios information

10

maintenance of requirements and

scenarios specification

• elicitation results

• requirements and scenarios

information

• elicitation basic material

• elicitation results

• requirements and

scenarios information

• elicitation basic material

Table 1. Interface information types of direct sub-processes of requirements engineering.

The input and output information types in the interface of the processes described in

Table 1 are elaborated below:

• The process elicitation uses input information on the requirements, scenarios, and

relations among them (requirements and scenarios information). The process

produces as output descriptions of the problem, elicited requirements and

scenarios, relations between elicited requirements and scenarios and existing

requirements and scenarios, and domain ontologies and domain knowledge

(elicitation results), and the elicited material, e.g., stakeholders protocols,

underlying the elicitation results (elicitation basic material).

• The process manipulation of requirements and scenarios needs descriptions of the

perceived problem from the stakeholders as a result from the elicitation task;

elicited requirements and scenarios, relations between elicited requirements and

scenarios and existing requirements and scenarios, and domain ontologies and

domain knowledge (elicited requirements). The process produces reformulated

requirements, scenarios, and relations among them (requirements and scenarios

information).

• The process maintenance of requirements and scenarios specification stores

information on the requirements, scenarios, and relations among them

(requirements and scenarios information), descriptions of the problem, elicited

requirements and scenarios, relations between elicited requirements and

scenarios and existing requirements and scenarios, and domain ontologies and

domain knowledge (elicitation results), and the elicited material underlying the

elicitation results (elicitation basic material). The process maintenance of

requirements and scenarios specification provides as output information the same

information as its input information. Its only function is to store the information.

It has no further processing, such as combining or adding information.

11

The static perspective on the composition relation between the process requirements

engineering and its direct sub-processes is shown in Figure 2. Within the component

requirements engineering a number of information links are distinguished. The names of

these information links reflect which information can be exchanged.

requirements
engineering

requirements engineering task control

maintenance of
requirements
and scenarios
specification

elicitation

requirements and scenarios information to elicitation

manipulation of
requirements
and scenarios

requirements and
scenarios information to
specification maintenance

elicitation results to
manipulation

elicitation results to
specification maintenance

elicitaton basis material to specification maintenance

Figure 2. Process composition of requirements engineering: information links

 The dynamic perspective on the composition relation specifies control over the sub-

components and information links within the component requirements engineering. Task

control within requirements engineering specifies a flexible type of control: during

performance of each process it can be decided to suspend the process for a while to do

other processes in the meantime, and resume the original process later. The task control

specifies which sub-component is activated under which conditions.

 On startup of requirements engineering, elicitation is immediately activated with, of

course, no existing requirements and scenarios information in its input interface. Upon

termination of elicitation, its results can be processed by manipulation of requirements and

scenarios and can be placed in documents by maintenance of requirements and scenarios

specification. On termination of manipulation of requirements and scenarios, elicitation can be

reactivated. In contrast to its initial activation, this time elicitation can be based on

information resulting from the manipulation of previously elicited requirements and

scenarios.

12

4.2 Knowledge Composition of Requirements Engineering

The information types described in the interfaces of the component requirements

engineering and its direct sub-components are briefly described in this section. All of

these information types specify statements about requirements and/or scenarios. In turn

a requirement is a statement that some behavioural property is required, expressed by

the object-level information types in Figure 3. To be able to express, for example, that a

requirement is ambiguous, or that a scenario has been elicited, or that a requirement is a

refinement of another requirement, requirements and scenarios expressed as statements

on the object level, are terms at the meta-level. The information types on the meta-level

of Figure 3 all make use of a meta-description construct specified in the information

type requirements meta-descriptions that makes object-terms of the object level statements

stating that a certain property is a requirement.

 The information types specified in the interfaces of the component requirements

engineering and its direct sub-components all refer to. This information type contains a

sort REQUIREMENTS which contains all formal, semi-formal, and informal requirements

as its objects. The sort REQUIREMENTS has three sub-sorts: FORMAL REQUIREMENTS,

SEMI-FORMAL REQUIREMENTS, and INFORMAL REQUIREMENTS. These three sub-sorts

are defined in three separate information types which each contain in their respective

sort the meta-descriptions of information types containing the actual statements. This is

depicted in Figure 3, in which the dashed lines indicate the meta-description-of relation.

13

requirements
meta-description

semi-formal
requirements

informal
requirements

formal
requirements

meta-level

object-level

informal
requirements

meta-description

semi-formal
requirements

meta-description

formal
requirements

meta-description

requirements

Figure 3. Information types and meta-levels related to meta-description of requirements

The construction of the information type containing the meta-description of scenarios is

similar to the construction of the information type containing the meta-description of

requirements. The sorts SCENARIOS, INFORMAL SCENARIOS, SEMI-FORMAL

SCENARIOS, and FORMAL SCENARIOS are specified.

 The information type requirements and scenarios information is based on three

information types: requirements information, scenarios information, and relations between

requirements and scenarios, as shown in Figure 4. In turn, the information type

requirements information is based on three information types: current requirements, clusters

of requirements, and relations among requirements. The information type scenarios

information is based on three similar information types: current scenarios, clusters of

scenarios, and relations among scenarios.

14

requirements and
scenarios information

relations between
requirements and

scenarios

requirements
information

clusters of
requirements

current
requirements

relations among
requirements

scenarios
 information

clusters of
scenarios

current
scenarios

relations among
scenarios

Figure 4. Information type requirements and scenarios information.

Examples of relations defined in these information types are shown in Table 2. In this

table, for example, requirement_in_cluster: REQUIREMENT * REQ-CLUSTER-ID expresses that

requirement_in_cluster is a binary relation on the product set REQUIREMENT * REQ-CLUSTER-

ID.

Information type Examples of relations

current requirements current_requirement: REQUIREMENTS

current scenarios current_scenario: SCENARIOS

clusters of requirements requirement_in_cluster: REQUIREMENT *

REQ-CLUSTER-ID

clusters of scenarios scenario_in_cluster: SCENARIO *

SCEN-CLUSTER-ID

relations among requirements req_is_more_precise_than_req: REQ-CLUSTER-ID *

REQ-CLUSTER-ID

req_refines_req: REQ-CLUSTER-ID *

REQ-CLUSTER-ID

/* refinement across one level of process abstraction within the

requirements and scenarios */

relations among scenarios scen_is_more_precise_than_scen: SCEN-CLUSTER-ID *

SCEN-CLUSTER-ID

15

scen_refines_scen: SCEN-CLUSTER-ID *

SCEN-CLUSTER-ID

/* refinement across one level of process abstraction within the

requirements and scenarios */

relations between requirements

and scenarios

scen_illustrates_req: SCEN-CLUSTER-ID *

REQ-CLUSTER-ID

scen_satisfies_req: FORMAL-SCEN-CLUSTER-ID *

FORMAL-REQ-CLUSTER-ID

Table 2. Information types and examples of relations defined in the information types related to

requirements and scenarios information.

The relations describing relationships between and among requirements and scenarios

specify the smallest relationships possible; e.g., transitive closures of ‘chains of

relationships’ are not specified.

elicited
requirements

problem
description

elicited
scenarios

relations between
acquired and existing

information

relations between
elicited and existing

information

acquisition
results

acquired domain
ontology

acquired domain
knowledge

elicitation
results

acquired
domain ontology
and knowledge

Figure 5. Information type elicitation results.

Figure 5 shows the composition of the information types elicitation results, acquisition

results and acquired domain ontology and knowledge.

 Examples of relations defined in these information types are shown in Table 3.

Information type Examples of relations

16

elicited requirements elicited_requirement: INFORMAL REQUIREMENTS

elicited scenarios elicited_scenario: INFORMAL SCENARIOS

relations between elicited and

existing information

req_based_on: INFORMAL-REQ-CLUSTER-ID *

REQ-CLUSTER-ID

scen_based_on: INFORMAL-SCEN-CLUSTER-ID *

SCEN-CLUSTER-ID

problem description identified_problem: PROBLEM DESCRIPTION

acquired domain ontology acquired_ontology: DOMAIN ONTOLOGY

acquired domain knowledge acquired_knowledge: DOMAIN KNOWLEDGE

relations between acquired and

existing information

acquired_based_on: DOMAIN ONTOLOGY AND

DOMAIN KNOWLEDGE *

CLUSTER-ID

Table 3. Information types and examples of relations defined in the information types related to elicitation

results.

The relation acquired knowledge represents both knowledge about and models of the

domain.

4.3 Illustrations from the case study

For the example application, first a list of nine, rather imprecisely formulated initial

requirements was elicited. As an example, the elicited requirement on ‘keeping aware’

is discussed below.

4.3.1 Elicitation

Example of an informal initial requirement:

L0.R1 The user needs to be kept ‘aware’ of relevant new information on the World Wide Web.

Requirement L0.R1 is based on the information elicited from the interview with the

stakeholder. The following scenario was elicited from the stakeholder as well:

L0.Sc1

1. user generates an awareness scope : AS1

2. user is waiting

3. new information is made available on the World Wide Web

4. user receives results for awareness scope AS1: ASR1

17

4.3.2 Manipulation

The requirement L0.R1 was analysed and reformulated into a more precise requirement.

Reformulation from informal to semiformal

In the (reformulated) scenarios and requirements, terminology is identified, relevant for

the construction of domain ontologies (words in bold-face are part of the domain

ontologies being acquired).

Example of a reformulation of a requirement at top level:

L0.R1.1 The user will be notified of new information (on the World Wide Web) on an awareness scope

after the user has expressed the awareness scope and

just after this new information becomes available on the World Wide Web,

unless the user has retracted the awareness scope (awareness scope retraction).

Next, in the process to semiformal and formal reformulations, for the informally

specified requirement L0.R1.1, the following reformulation steps have been made:

 At any point in time

The user will receive on its input results for awareness scope , i.e., new information on an awareness

scope

after the user has generated on its output the awareness scope and

just after this new information becomes available as output of the World Wide Web ,

unless by this time the user has generated on its output an awareness scope retraction.

 At any point in time,

if at an earlier point in time the user has generated on its output an awareness scope, and

since then the user has not generated on its output an awareness scope retraction referring to this

awareness scope, and

just before new information within this awareness scope becomes available as output of the World Wide

Web ,

then the user will receive on its input this new information within the awareness scope .

Based on these reformulation steps the following semi-formal structured requirement

has been specified:

L0.R1.2 At any point in time,

if

 at an earlier point in time

18

 user output : an awareness scope, and

 since then

 not user output : retraction of this awareness scope, and

 just before

 World Wide Web output: new information within this awareness scope

then

 user input: new information within this awareness scope

The interplay between requirements elicitation and analysis and scenario elicitation and

analysis plays an important role. To be more specific, it is identified which requirements

and scenarios relate to each other; for example, L0.R1.2 relates to L0.Sc1.2. If it is identified

that for a requirement no related scenario is available yet (isolated requirement), then a

new scenario can be acquired.

L0.Sc1.2

1. user output: awareness scope

2. user is waiting

3. World Wide Web output: new information

4. user input: results for awareness scope

Reformulation from semiformal to formal

To obtain formal representations of requirements, the input and output ontologies have

to be chosen as formal ontologies. The domain ontologies acquired during the

reformulation process for the example application were formalised; part of the domain

ontologies related to the focus on requirements and scenarios is shown below:

ontology element: explanation:

SCOPE a sort for the search scopes and awareness scopes

USER a sort for the names of different users

PERSISTENCE_TYPE a sort to distinguish between persistent and incidental scopes

INFO_ELEMENT a sort for the result information

result_for_scope a binary relation on INFO_ELEMENT and SCOPE

persistent, incidental objects of sort PERSISTENCE_TYPE corresponding to the

difference in persistence between an awareness scope and a

search scope

input:

is_interested_in a ternary relation on USER, SCOPE and

PERSISTENCE_TYPE

19

output:

result_for_user a ternary relation on INFO_ELEMENT, USER and SCOPE

In addition, the temporal structure, if present in a semi-formal representation, has to be

expressed in a formal manner. Using the formal ontologies, and a formalisation of the

temporal structure, a mathematical language is obtained to formulate formal

requirement representations. The semantics are based on compositional information

states which evolve over time. An information state M of a component D is an

assignment of truth values {true, false, unknown} to the set of ground atoms that play a role

within D. The compositional structure of D is reflected in the structure of the information

state. A formal definition can be found in (Brazier, Treur, Willems, and Wijngaards,

1999). The set of all possible information states of D is denoted by IS(D). A trace �
� of a

component D is a sequence of information states (Mt)t ∈ N in IS(D). Given a trace 4 of

component D, the information state of the input interface of component C at time point t

of the component D is denoted by stateD(
�

�, t, input(C)), where C is either D or a sub-component

of D. Analogously, stateD(
�

�,�t, output(C)), denotes the information state of the output interface

of component C at time point t of the component D. These formalised information states

can be related to statements via the formally defined satisfaction relation |=. Behavioural

properties can be formulated in a formal manner, using quantifiers over time and the

usual logical connectives such as not, &, ⇒.

Examples of formal representations of top level requirements:

L0.R1.2 is formalised by L0.R1.3: The first part of this requirement addresses the case that

information relating to an awareness scope is already present, whereas the second part

addresses the case that the information becomes available later.

L0.R1.3:

∀� � , t

 [stateS(� , t, output(U)) |= is_interested_in(U:USER, S:SCOPE, persistent) &

 stateS(� , t, output(WWW)) |= result_for_scope(I:INFO_ELEMENT, S:SCOPE)]

 ⇒ ∃t’ > t

 stateS(� , t’, input(U)) |= result_for_user(I:INFO_ELEMENT, U:USER, S:SCOPE)

&

∀M , t1, t2>t1

20

 stateS(� , t1, output(U)) |= is_interested_in(U:USER, S:SCOPE, persistent) &

 stateS(� , t2, output(WWW)) |= result_for_scope(I:INFO_ELEMENT, S:SCOPE) &

 ∀t’ [t1 < t’ < t2 ⇒

 [not stateS(� , t’, output(WWW)) |= result_for_scope(I:INFO_ELEMENT, S:SCOPE) &

 not stateS(� , t’, output(U)) |= not is_interested_in(U:USER, S:SCOPE, persistent)]

 ⇒ ∃t3 > t2

 stateS(� , t3, input(U)) |= result_for_user(I:INFO_ELEMENT, U:USER, S:SCOPE)

Example of a formal representation of a top level scenario

The following formal scenario representation relates to the second formal requirement

representation expressed above. Note that point at time point 2 nothing happens, which

corresponds to the waiting of the user, of course in another (but similar) scenario the

waiting could take more time.

L0.Sc1.3:

 state
S
(M , 1, output(U)) |= is_interested_in(U:USER, S:SCOPE, persistent)

 state
S
(M , 3, output(WWW)) |= result_for_scope(I:INFO_ELEMENT, S:SCOPE)

 state
S
(M , 4, input(U)) |= result_for_user(I:INFO_ELEMENT, U:USER, S:SCOPE)

5 Composition of Elicitation

Following Section 2, the process of elicitation is described in two phases: first is process

composition, then composition of knowledge structures related to this process.

5.1 Process composition of elicitation

In Figure 6 the first two levels of process abstraction for elicitation are shown. The

processes problem analysis, acquisition of domain ontology and knowledge, and elicitation of

requirements and scenarios are distinguished within the process elicitation.

elicitation

problem analysis acquisition of domain
ontology and knowledge

elicitation of
requirements and

scenarios

Figure 6. First level of process abstraction within process elicitation.

The three sub-processes of elicitation, as depicted in Figure 6, are closely intertwined.

The process problem analysis extracts the perceived problem from the stakeholders. It can

21

also determine that requirements and scenarios are needed for another level of process

abstraction. The process acquisition of domain ontology and knowledge acquires from

stakeholders ontologies and knowledge of the domain, possibly related to existing

requirements and scenarios. The process elicitation of requirements and scenarios elicits

requirements and scenarios from stakeholders on the basis of identified problems, and

existing requirements and scenarios.

 Each of the processes depicted in Figure 6 can be characterized in terms of their

interface information types, as shown in Table 4.

process input information type output information type

acquisition of domain ontology

and knowledge

• requirements and scenarios

information

• problem description

• acquisition results

problem analysis • requirements and scenarios

information

• acquisition results

• problem description

elicitation of requirements and

scenarios

• requirements and scenarios

information

• acquisition results

• problem description

• elicited requirements

• elicited scenarios

• relations between

elicited and existing

information

Table 4. Input and output information types of the direct sub-processes of the process elicitation.

The input and output information types in the interface of the process described in Table

4 are elaborated below:

• The process acquisition of domain ontology and knowledge uses as input information

on requirements, scenarios, and relations among them (requirements and scenarios

information), and descriptions of identified problems (problem descriptions). The

process produces acquired domain ontologies and knowledge (acquisition results).

• The process problem analysis uses information on the requirements, scenarios,

and relations among them (requirements and scenarios information), and acquired

domain ontology and knowledge (acquisition results). The process has as output a

description of identified problems (problem descriptions).

22

• The process elicitation of requirements and scenarios requires information on

requirements, scenarios, and relations among them (requirements and scenarios

information), acquired domain ontology and knowledge (acquisition results), and a

description of identified problems (problem descriptions). The ouput of the

process consists of the elicited requirements (elicited requirements), the elicited

scenarios (elicited scenarios), and relationships between elicited requirements and

scenarios and existing requirements and scenarios information (relations between

elicited and existing information).

The static perspective on the composition relation between the process requirements

engineering and its direct sub-processes is shown in Figure 7.

elicitation elicitation task control

elicitation of
requirements and

scenarios

acquisition of
domain ontology
and knowledge

problem description
to acquisition

problem
analysis

problem description to elicitation

requirements and scenario information to elicitation

acquisition
results to
problem
analysis

requirements
and scenario
information to

problem analysis

requirements and
scenario information

to acquisition

acquisition
results to
elicitation

acquisition results to output

problem description to output

relations
between

elicited and
existing

information

elicited
scenarios

elicited
requirements

Figure 7. Process composition relation of elicitation : information links

Within the component elicitation a number of private and mediating information links is

distinguished. The names of these information links reflect which information can be

exchanged through the information link between the two processes.

 The dynamic perspective on the composition relation specifies control over the sub-

components of the component elicitation. Task control within elicitation specifies which

sub-component is activated under which conditions. The three sub-components of

elicitation can all be activated in parallel: results obtained by a sub-component can be

used by another sub-component for interaction with stakeholders. At startup of

requirements engineering, elicitation does not have any information in its input interface,

23

and therefore its sub-components do not have any information in their input interfaces.

This results in elicitation of an initial perception of the problem, initial acquisition of

domain ontology and knowledge, and initial elicitation of requirements and scenarios.

In subsequent activations, information is available at the input interface of elicitation,

which can be used to influence interactions with stakeholders.

 An alternative to the current approach described above is a sequential approach, in

which first problem analysis is activated, after its termination acquisition of domain ontology

and knowledge is activated, and after the latter termination, elicitation of requirements and

scenarios is activated. After termination of elicitation of requirements and scenarios a choice

exists: terminate internal activities for elicitation, or activate problem analysis.

5.2 Knowledge composition of elicitation

The information types described in the interfaces of the component elicitation and its

direct sub-components have already been described in Section 4.2.

6 Composition of Manipulation of Requirements and Scenarios

In Section 6.1 the process composition of manipulation of requirements and scenarios again

is described, and in Section 6.2 the composition of knowledge structures.

6.1 Process composition of manipulation of requirements and scenarios

Figure 8 shows the first two levels of process abstraction for manipulation of requirements

and scenarios. The processes manipulation of requirements, manipulation of scenarios, and

identification of relationships between requirements and scenarios are distinguished within

the process manipulation of requirements and scenarios.

24

manipulation of
requirements and

scenarios

manipulation of
requirements

manipulation of
scenarios

identification of relationships
between requirements and

scenarios

Figure 8. First level of process abstraction within process manipulation of requirements and scenarios.

The process manipulation of requirements is responsible for removing ambiguities,

resolving requirements not fully supported by stakeholders, and resolving

inconsistencies, while striving for progressive formalisation of requirements. This

process also produces the relationships among requirements. The process manipulation of

scenarios is similar to the process manipulation of requirements. The process identification of

relationships between requirements and scenarios establishes which requirements are

related to which scenarios, and vice versa.

 Each of the processes depicted in Figure 8 can be characterized in terms of their

interface information types, as shown in Table 5.

process input information type output information type

manipulation of requirements • elicited requirements

• relations between elicited and

existing information

• acquisition results

• isolation information

• requirements

information

manipulation of scenarios • elicited scenarios

• relations between elicited and

existing information

• acquisition results

• isolation information

• scenarios information

identification of relationships

between requirements and

scenarios

• requirements information

• scenarios information

• relations between

requirements and

scenarios

• isolation information

Table 5. Interface information types of the processes within manipulation of requirements and scenarios.

The input and output information types in the interface of the process described in Table

5 are elaborated below:

25

• The process manipulation of requirements requires as input requirements elicited from

stakeholders (elicited requirements), relations between elicited requirements and

scenarios and existing requirements and scenarios information (relations between

elicited and existing information), results of acquisition of domain ontology and

knowledge (acquisition results), and isolated requirements and scenarios (isolation

information). The process produces as ouput requirements, clusters of requirements,

and relations among requirements (requirements information).

• The process manipulation of scenarios requires scenarios elicited from stakeholders

(elicited scenarios), relations between elicited requirements and scenarios and existing

requirements and scenarios information (relations between elicited and existing

information), results of acquisition of domain ontology and knowledge (acquisition

results), and isolated requirements and scenarios (isolation information). The process

has as ouput scenarios, clusters of scenarios, and relations among scenarios

(scenarios information).

• The process identification of relationships between requirements and scenarios performs

its task in two steps: first the relations between requirements and scenarios are

determined, then it identifies isolated requirements (i.e., requirements for which no

scenario exists) and isolated scenarios (i.e., scenarios for which no requirement

exists). As input the process needs information of two types:

− requirements information: requirements, clusters of requirements, and relations

among requirements,

− scenarios information: scenarios, clusters of scenarios, and relations among

scenarios.

The process identification of relationships between requirements and scenarios produces

output information of two types:

− relations between requirements and scenarios: relations between requirements,

scenarios, clusters of requirements, and clusters of scenarios and

− isolation information: isolated requirement and isolated scenarios.

26

manipulation of
requirements and

scenarios

manipulation of requirements and scenarios task control

identification of
relationships

between
requirements and

scenarios

manipulation of
requirements

manipulation of
scenarios

scenarios information to identification

relations between elicited and existing information to identification

elicited scenarios,
relations between

elicited and existing
information, and

acquisition results

elicited requirements,
relations between

elicited and existing
information, and

acquisition results
requirements
information to
identification

requirements information to output

scenarios information
to output

relations between
requirements and
scenarios to output

isolation
information to

scenario
manipulation

isolation information to requirement manipulation

Figure 9. Process composition of manipulation of requirements and scenarios:

information links.

The static perspective on the composition relation between the process requirements

engineering and its direct sub-processes is shown in Figure 9. Information exchange

within the component manipulation of requirements and scenarios is possible through a

number of information links.

 The dynamic perspective on the composition relation specifies control over the sub-

components of the component manipulation of requirements and scenarios. Task control

within manipulation of requirements and scenarios specifies which sub-component is

activated under which conditions. On the basis of the dependencies in information links,

the processes manipulation of scenarios and manipulation of requirements need to finish

before the process identification of relationships between requirements and scenarios is able

to finish. A number of alternative task control descriptions can be constructed which

adhere to this observation. In a purely sequential approach first manipulation of

requirements becomes active, then manipulation of scenarios, and finally identification of

requirements- and scenarios- relationships.

6.2 Knowledge composition of manipulation of requirements and scenarios

The information types described in the interfaces of the component manipulation of

requirements and scenarios and its direct sub-components have been described in Section

4.2. The information type isolation information is newly introduced in the sub-

27

components: it consists of two information types: isolated requirements, and isolated

scenarios.

7 Composition of Maintenance of Requirements and Scenarios

Specification

As before, first the process composition for the process of maintenance of requirements

and scenarios specification is described (in Section 7.1), then composition of knowledge

structures related to this process (in Section 7.2).

7.1 Process composition of maintenance of requirements and scenarios

specification

The first two levels of process abstraction for maintenance of requirements and scenarios

specification are shown in Figure 10. The processes maintenance of requirements and

scenarios documents, and maintenance of traceability links are distinguished within the

process maintenance of requirements and scenarios specification.

maintenance of
requirements and

scenarios specification

maintenance of
requirements and

scenarios documents

maintenance of
traceability links

Figure 10. First level of process abstraction within process maintenance of requirements and scenarios

specification.

The process maintenance of requirements and scenarios documents represents the

information on requirements and scenarios in a number of documents. The process

maintenance of traceability links creates the hyperlinks within and between documents.

 Each of the processes depicted in Figure 10 can be characterised in terms of their

interface information types, as shown in Table 6.

process input information type output information type

maintenance of requirements and • requirements and scenarios • requirements and scenarios

28

scenarios documents information

• elicitation results

information

• elicitation results

maintenance of traceability links • traceability relations • traceability relations

Table 6. Input and output information types of the direct sub-processes of the process maintenance of

requirements and scenarios specification.

The input and output information types in the interface of the process described in Table

6 are elaborated below:

• The process maintenance of requirements and scenarios documents uses as input

information on the requirements, scenarios, and relations among them

(requirements and scenarios information), and descriptions of the problem, elicited

requirements and scenarios, relations between elicited requirements and

scenarios and existing requirements and scenarios, and domain ontologies and

domain knowledge (elicitation results). The process produces as output

information its input information: no information is changed.

• The process maintenance of traceability links stores all information regarding

traceability, therefore, it needs and produces information of type traceability

relations without changing that information. The information type consists of

references to the information types requirements information, scenarios information,

relations between elicited and existing information, and relations between requirements

and scenarios.

The static perspective on the composition relation between the process requirements

engineering and its direct sub-processes is shown in Figure 11.

29

maintenance of
requirements and

scenarios
specification

maintenance of requirements and scenarios specification task control

maintenance of
requirements and

scenarios
documents

maintenance of
traceability links

traceability information

elicitation results

requirements and scenarios information

elicitation results to output

requirements and scenarios information to output

traceability information to output

Figure 11. Composition relation between the process of maintenance of requirements and scenarios

specification and its direct sub-processes.

Within the component maintenance of requirements and scenarios specification a number of

mediating information links is distinguished. The names of these information links

reflect which information can be exchanged through the information link between the

two processes.

 The dynamic perspective on the composition relation specifies control over the sub-

components of the component maintenance of requirements and scenarios specification.

Task control within maintenance of requirements and scenarios specification specifies which

sub-component is activated under which conditions.

7.2 Knowledge composition of maintenance of requirements and scenarios

specification

The information types described in the interfaces of the component maintenance of

requirements and scenarios specification and its direct sub-components have been

described in Section 4.2.

8 Composition of Manipulation of Requirements

The composition of manipulation of scenarios is similar to the composition of manipulation

of requirements. The difference lies it the subject of manipulation: scenarios; this

distinction is reflected in the names of the sub-processes of manipulation of scenarios and

in the names of information types related to these sub-processes.

30

8.1 Process composition of manipulation of requirements

The first level of process abstraction within manipulation of requirements is shown in

Figure 12. The processes reformulation of requirements, validation of requirements, detection

of ambiguous and non-fully supported requirements, detection of inconsistent requirements, and

identification of functional clusters of requirements are distinguished within the process

manipulation of requirements.

manipulation of
requirements

reformulation of
requirements

validation of
requirements

detection of ambiguous
and non-fully supported

requirements

detection of inconsistent
requirements

identification of
clusters of requirements

Figure 12. Processes at different abstraction levels in process manipulation of requirements.

The process detection of ambiguous and non-fully supported requirements analyses the

requirements for ambiguities and the extent of non-supportedness of requirements by

stakeholders. The process detection of inconsistent requirements analyses the requirements

for inconsistencies among requirements. The process reformulation of requirements plays

an important role within manipulation of requirements: problematic requirements are

reformulated into less problematic requirements by adding more and more structure to

requirements: from informal to semi-formal to formal. The process validation of

requirements has interaction with stakeholders to establish the supportedness of a

requirement in relation to a stakeholder, and whether pro and con arguments exist for a

requirement. The process identification of clusters of requirements identifies clusters of

requirements on the basis of clustering criteria.

 The process manipulation of scenarios has a structure similar to manipulation of

requirements.

 Each of the processes depicted in Figure 12 can be characterized in terms of their

interface information types, as shown in Table 7.

31

process input information type output information type

detection of ambiguous and non-

fully supported requirements

• elicited requirements

• current requirements

• validated requirements

information

• non-formalisable requirements

• ambiguity information

• unsupportedness

information

detection of inconsistent

requirements

• current requirements

• relations among requirements

• inconsistency

information

reformulation of requirements • elicited requirements

• ambiguity information

• inconsistency information

• validated requirements

information

• isolated scenarios

• current requirements

• relations among

requirements

• requirement alternatives

• non-formalisable

requirements

validation of requirements • requirement alternatives

• unsupportedness information

• validated requirements

information

identification of clusters of

requirements

• current requirements

• relations among requirements

• clusters of requirements

Table 7. Interface information types of processes within manipulation of requirements.

The input and output information types in the interfaces of the processes described in

Table 7 are elaborated below.

• The process detection of ambiguous and non-fully supported requirements requires as

input the following information types: requirements elicited from stakeholders

(elicited requirements), the current requirements (current requirements), validations

of requirements (validated requirements information), and indications of which

requirements are non-formalisable (non-formalisable requirements). The process

outputs requirements which have an ambiguity (ambiguity information) or are non

fully supported by the stakeholders (unsupportedness information) .

• The process detection of inconsistent requirements requires as input the current

requirements (current requirements), and relations among these requirements

(relations among requirements). The output of the process consists of groups of

requirements which together are inconsistent (inconsistency information).

32

• The process reformulation of requirements requires one or more of the following

information types: groups of requirements which have an ambiguity (ambiguity

information), groups of requirements which have an inconsistency (inconsistency

information), a validation of the requirements (validated requirements information),

and isolated requirements and scenarios (isolation information). There are two

possible reasons for a requirement to be isolated. The first is that a scenario still

has to be formulated for this requirement, the second is that the requirement

itself is not correct: it has to be removed or strongly reformulated. Isolated

requirements are input of reformulation of requirements to validate them on

correctness. Isolated scenarios are input, because on the basis of these scenarios

some new requirements may be formulated. The formulation of scenarios for

isolated requirements and the validation of isolated scenarios are performed

within the process reformulation of scenarios. The process reformulation of

requirements produces the current requirements (current requirements), relations

among these requirements (relations among requirements), alternative options and

trade-offs for requirements (requirement alternatives), and indications of which

requirements are non-formalisable (non-formalisable requirements).

• The input of the process validation of requirements consits of alternative options

and trade-offs for requirements (requirement alternatives). The process’s output

consists of validations of requirements in terms of supportedness by stakeholders

and arguments pro and con alternatives (validated requirements information).

• The process identification of clusters of requirements requires the current

requirements (current requirements), and relations among these requirements

(relations among requirements). It produces clusters of requirements (clusters of

requirements).

The static perspective on the composition relation between the process manipulation of

requirements and its sub-processes is shown in Figure 13.

33

manipulation of
requirements

manipulation of requirements task control

identification of
clusters of

requirements

validation of
requirements

detection of
inconsistent

requirements

detection of
ambiguous and

non-fully
supported

requirements

elicited
requirements
to ambiguity

detection

reformulation of
requirements

requirement alternatives

validated requirements
information to reformulation

current requirements
to ambiguitiy detection inconsistency

information

current requirements and relationships
among requirements to output

clusters of
requirements

current requirements and relationships among
requirements to cluster identification

current requirements and
relationships among requirements
to inconsistency detection

ambiguity
information

validated
requirements
to ambiguity
detection

elicited requirements and
isolation information to
reformulation

non-
formalisable
requirements

unsupportedness
information

Figure 13. Process composition of manipulation of requirements: information links.

Within the component manipulation of requirements a number of private and mediating

information links is distinguished. The names of these information links reflect which

information can be exchanged through the information link between the two processes.

 The dynamic perspective on the composition relation specifies control over the sub-

components of the component manipulation of requirements. Task control within

manipulation of requirements specifies which sub-component is activated under which

conditions. A sequential description of control over the sub-components is given. Task

control with varying degrees of parallelism are also possible, but not described here.

 On activation of manipulation of requirements, detection of ambiguous and non-fully

supported requirements is activated, and elicited requirements are transferred to that

process. On termination of detection of ambiguous and non-fully supported requirements the

process reformulation of requirements is activated, and information on ambiguity of

requirements is transferred to that process. On termination of reformulation of

requirements a number of conditions exist, which may result in parallel activation of sub-

components:

34

• After termination of detection of ambiguous and non-fully supported requirements,

and resolution of ambiguities, if any, by reformulation of requirements, detection of

inconsistencies is activated.

• If requirement alternatives are produced, then validation of requirements is

activated.

• If reformulation of requirements is considered to have produced interesting results,

then detection of ambiguous and non-fully supported requirements is activated.

• If reformulation of requirements is considered to be finished, then identification of

clusters of requirements is activated.

On termination of detection of inconsistencies, reformulation of requirements is activated. On

termination of validation of requirements, reformulation of requirements is activated. On

termination of identification of clusters of requirements, manipulation of requirements

terminates itself.

8.2 Knowledge composition of manipulation of requirements

The information types described in the interfaces of the component manipulation of

requirements and its direct sub-components are briefly described in this section.

 The information types ambiguity information, inconsistency information, and non-

formalisable requirements express statements about requirements: whether a requirement

is ambiguous, whether a group of requirements is inconsistent, and whether a

requirement is not formalisable.

 The information type validated requirements information is based on two information

types: annotated requirements, and critiqued requirements, as shown in Figure 14. The

information type annotated requirements contains relations expressing whether a

requirement is supported by a stakeholder, or not. The information type critiqued

requirements is based on two information types: pro arguments, and con arguments. The

information types pro arguments and con arguments contain relations expressing pro and

con arguments for or against (respectively) requirement alternatives.

35

annotated
requirements

pro
arguments

con
arguments

critiqued
requirements

validated
requirements
information

Figure 14. Information type validated requirements information.

The information type requirements alternatives is based on two information types:

requirement options, and requirement trade-offs, as shown in Figure 15. The information

type requirements options contains relations expressing alternatives for a requirement.

The information type requirements trade-offs specifies arguments for and against

requirement alternatives; it is based on the information types pro arguments and con

arguments.

requirement
trade-offs

pro
arguments

con
arguments

requirement
options

requirements
alternatives

Figure 15. Information type requirements alternatives.

The information type ambiguity information (not shown) contains relations expressing

which groups of requirements are ambiguous. The information type inconsistency

information contains relations expressing which groups of requirements are inconsistent.

The information type non-formalisable requirements contains relations expressing

requirements that are not formalisable: either these requirements are informal

requirements and cannot be reformulated into semi-formal requirements, or these

requirements are semi-formal requirements that cannot be reformulated into formal

requirements.

36

9 Composition of Reformulation of Requirements

In Section 9.1 the process composition of reformulation of requirements is discussed; then,

in Section 9.2, the composition of knowledge structures related to this process is

discussed.

9.1 Process composition of reformulation of requirements

The first two levels of process abstraction for reformulation of requirements are shown in

Figure 16. The processes reformulation into informal requirements, reformulation into semi-

formal requirements, and reformulation into formal requirements are distinguished within the

process reformulation of requirements.

reformulation of
requirements

reformulation into
semi-formal

requirements

reformulation into
formal

requirements

reformulation into
informal

requirements

Figure 16. First level of process abstraction within process reformulation of requirements.

The process reformulation into informal requirements reformulates informal requirements in

(other) informal requirements. The process reformulation into semi-formal requirements

reformulates information and semi-formal requirements into semi-formal requirements.

The process reformulation into formal requirements reformulates informal, semi-formal, and

formal requirements into formal requirements. All of these reformulation processes keep

track of reformulation relations among requirements.

 Each of the processes depicted in Figure 16 can be characterized in terms of their

interface information types, as shown in Table 8.

process input information type output information type

reformulation into informal

requirements

• elicited requirements

• ambiguity information

• inconsistency information

• validated requirements

• informal requirements

information

37

information

reformulation into semi-formal

requirements

in addition to the above:

• informal requirements

information

• semi-formal requirements

information

• non-formalisable requirements

reformulation into formal

requirements

in addition to the above:

• semi-formal requirements

information

• formal requirements information

• non-formalisable requirements

Table 8. Input and output information types of the direct sub-processes of the process reformulation of

requirements.

The input and output information types in the interface of the process described in Table

8 are elaborated below:

• The process reformulation into informal requirements requires input of one or more

of the following information types: groups of requirements which have an

ambiguity (ambiguity information), groups of requirements which have an

inconsistency (inconsistency information) and a validation of the requirements

(validated requirements information). The process outputs information on informal

requirements (informal requirements information).

• In addition to the abovementioned input, the process reformulation into semi-formal

requirements requires the information type for information on informal

requirements (informal requirements information). The process produces output

information on semi-formal requirements (semi-formal requirements information),

and indications of which requirements are non-formalisable (non-formalisable

requirements).

• In addition to the abovementioned input, the process reformulation into formal

requirements requires as input the information type for information on semi-

formal requirements (semi-formal requirements information). The process produces

output information on formal requirements (formal requirements information), and

indications of which requirements are non-formalisable (non-formalisable

requirements).

The static perspective on the composition relation between the process reformulation of

requirements and its direct sub-processes is shown in Figure 17.

38

reformulation of
requirements

reformulation of requirements task control

reformulation into
formal

requirements

reformulation into
informal

requirements

reformulation into
semi-formal

requirements

semi-formal requirements
information to formal reformulation

requirements to be formalised

informal requirements information to semi-formal reformulation

informal requirements
information to formal

reformulation

informal requirements information to output

semi-formal requirements to
output

non-
formalisable
requirements

to output

formal
requirements
information to

outputrequirements to be
structured

requirements to be
reformulated informally

non-
formalisable
requirements
to output

Figure 17. Composition relation between the process of reformulation of requirements and its direct sub-

processes.

Within the component reformulation of requirements a number of private and mediating

information links is distinguished. The names of these information links reflect which

information can be exchanged through the information link between the two processes.

The information links requirements to be formalise, requirements to be structured, and

requirements to be reformulated informally link the following information types: elicited

requirements, ambiguity information, inconsistency information, validated requirements

information, and isolation information.

 The dynamic perspective on the composition relation specifies control over the sub-

components of the component reformulation of requirements. Task control within

reformulation of requirements specifies which sub-component is activated under which

conditions. Although some dependencies in terms of information flow exist between

these sub-components, sequential or more parallel approaches to task control can be

equally well employed.

9.2 Knowledge composition of reformulation of requirements

The information types described in the interfaces of the component reformulation of

requirements and its direct sub-components are briefly described in this section.

 The information types informal requirements information, semi-formal requirements

information, and formal requirements information are all constructed in a similar fashion.

The information type informal requirements information is based on three information

39

types: current informal requirements, relations among requirements, and informal requirement

alternatives, as shown in Figure 18. The information type semi-formal requirements

information is based on three information types: current semi-formal requirements, relations

among requirements, and semi-formal requirement alternatives. The information type formal

requirements information is based on three information types: current formal requirements,

relations among requirements, and formal requirement alternatives.

informal
requirements
information

informal
requirement
alternatives

relations
among

requirements

current
informal

requirements

Figure 18. Partial view on information type informal requirements information

10 Discussion

The compositional knowledge modelling method DESIRE has been applied to the task of

Requirements Engineering. The resulting compositional process model has been

presented in some detail in this paper. The process model has been constructed on the

basis of studies of available literature, and a real-life case study in Requirements

Engineering: analysis and design of a Personal Internet Assistant (Herlea, Jonker, Treur,

and Wijngaards, 1999a). An overview of the overall composition is depicted in

Appendix A.

 The processes have been described at different levels of process abstraction, with

descriptions of their interfaces, a static composition relation specifying possibilities for

information exchange, and a dynamic composition relation: ‘control flow’. The static

composition relation does not prescribe a particular task control through the process

composition. The task control is formulated in terms of conditions which trigger

particular activities. Some control can be formulated which is generic: irrespective of

sequences of activities of specific requirement engineering processes. However, mostly

task control will depend on how the requirements engineering process is tailored for a

40

particular product and organisation. This will reflect in, e.g., the amount of flexibility

and iterative nature of sub-processes of the requirements engineering process.

 The compositional process model presented in this paper has been formally

specified and provides more details and structure for the requirements engineering

process than process models described in the literature on requirements engineering. For

example, in (Kontonya and Sommerville, 1998; Sommerville and Sawyer, 1997) the

following activities are considered core activities in the requirements engineering

process: ‘requirements elicitation’, ‘requirements analysis and negotiation’,

‘requirements documentation’, and ‘requirements validation’. The first three of these

core activities form the top level composition of the process model introduced in this

paper. In contrast to the references mentioned, in the model introduced here a detailed

specialisation of these three main processes is added. In the process model introduced

the fourth main activity, ‘requirements validation’ is considered an integrated part of the

manipulation processes both for requirements and scenarios, and is modelled within

these processes: detection of inconsistent requirements, detection of inconsistent scenarios,

validation of requirements, validation of scenarios.

 More extensive processes relating to stakeholders, such as described, for example in

(Maiden, Rugg, and Patel, 1999) and (Berztiss, 2000), have not been fully incorporated.

If a model is desired where these aspects, such as, for example, stakeholder

identification, format selection for requirements gathering (cf., (Berztiss, 2000)), the

model will have to be refined for this. The compositional nature of the model supports

such refinement processes.

 Another aspect not covered in detail is how to assess requirements on cost. If a

specific approach for risk analysis involving cost is desired to be part of the model, this

also can be added by refining the model.

 The compositional process model presented in this paper is a generic process model

for Requirements Engineering. It covers many of the process models as described in

literature: see above. Due to its compositional structure, the generic process model can

easily be refined or modified into a more specific process model for Requirements

Engineering, suitable to the situation at hand. If, for example, scenarios are not

considered of any importance in a situation, then processes concerning scenarios can be

omitted. Likewise, if a particular method is employed to validate requirements, this

41

method can be added by refining appropriate processes: by instantiation and/or

specialisation.

 To further investigate the applicability of this compositional process model,

additional requirements engineering experiments will be conducted. The formally

specified compositional process model for the task of requirements engineering can be

employed in the design of automated tools for requirements engineering (e.g., (Dubois,

1998; Dubois, Du Bois, and Zeippen, 1995)), supporting the activities of requirement

engineers on the basis of an agreed shared model of the requirements engineering task.

In further research the integration of the process model for requirements engineering

introduced here, with the design model for compositional systems described in (Brazier,

Jonker, Treur and Wijngaards, 1998), will be addressed.

References

Berztiss, A.T. (2000). A flexible requirements process. Proc. of the 11th Internat. Workshop on Database

and Expert Systems Applications, 2000, pp. 973-977.

Brazier, F.M.T., Dunin-Keplicz, B.M., Jennings, N.R., and Treur, J. (1995;1997). Formal Specification of

Multi-Agent Systems: a Real World Case In: Lesser V (ed.) Proceedings First International

Conference on Multi-Agent Systems ICMAS’95 (1995) pp. 25-32 MIT Press. Extended version in:

Huhns M and Singh M (eds.) International Journal of Co-operative Information Systems IJCIS

Vol. 6 No 1 (1997) pp. 67-94, (Special issue on Formal Methods in Co-operative Information

Systems: Multi-Agent Systems).

Brazier, F.M.T., Jonker, C.M., and Treur, J. (1998). Principles of Compositional Multi-agent System

Development. In: J. Cuena (ed.), Proceedings of the 15th IFIP World Computer Congress,

WCC'98, Conference on Information Technology and Knowledge Systems, IT&KNOWS'98, 1998,

pp. 347-360. To be published by IOS Press.

Brazier, F.M.T., Jonker, C.M., Treur, J. and Wijngaards, N.J.E. (1998). The Role of Abilities of Agents in

Re-design. In: Gaines, B. and Musen, M. (eds.). Proc. of the 11th Knowledge Acquisition

Workshop, KAW’98. Banff. University of Calgary. URL: http://ksi.cpsc.ucalgary.ca/

KAW/KAW98/brazier2.

Brazier, F.M.T., Treur, J., Wijngaards, N.J.E., and Willems, M., (1999). Temporal semantics of

compositional task models and problem solving methods. Data and Knowledge Engineering, vol.

29(1), 1999, pp. 17-42.

Brazier, F.M.T., and Wijngaards, N.J.E. (1997). An instrument for a purpose driven comparison of

modelling frameworks. In: Plaza, E., and Benjamins, R. (eds.). Proceedings of the 10th European

Workshop on Knowledge Acquisition, Modelling, and Management (EKAW’97). Sant Feliu de

42

Guixols, Catalania, Lecture Notes in Artificial Intelligence, vol. 1319, Springer Verlag, 1997, pp.

323-328.

Davis, A. M. (1993). Software requirements: Objects, Functions, and States, Prentice Hall, New Jersey,

1993.

Dubois, E. (1998). ALBERT: a Formal Language and its supporting Tools for Requirements Engineering.

Dubois, E., Du Bois, P., and Zeippen, J.M. (1995). A Formal Requirements Engineering Method for Real-

Time, Concurrent, and Distributed Systems. In: Proc. of the Real-Time Systems Conference,

RTS’95, 1995.

Erdmann, M. and Studer, R. (1998). Use-Cases and Scenarios for Developing Knowledge-based Systems.

In: Proc. of the 15th IFIP World Computer Congress, WCC’98, Conference on Information

Technologies and Knowledge Systems, IT&KNOWS’98 (J. Cuena, ed.), 1998, pp. 259-272.

Herlea, D., Jonker, C.M., Treur, J. and Wijngaards, N.J.E. (1999). A Case Study in Requirements

Engineering: a Personal Internet Agent. Technical Report, Vrije Universiteit Amsterdam,

Department of Artificial Intelligence, 1999. URL: http://www.cs.vu.nl/~treur/pareqdoc.html

Herlea, D.E., Jonker, C.M., Treur, J., and Wijngaards, N.J.E. (1999b) A Formal Knowledge Level Process

Model of Requirements Engineering. In: Imam, I., Kodratoff, Y., El-Dessouki, A., and Ali, M.

(Eds.). Multiple approaches to intelligent systems Proceedings of the 12th International

Conference on Industrial and Engineering Applications of AI and Expert Systems, IEA/AIE’99.

Lecture Notes in AI, vol. 1611, Springer Verlag, pp. 869-878.

Herlea, D.E., Jonker, C.M., Treur, J., and Wijngaards, N.J.E. (1999c). Integration of Behavioural

Requirements Specification within a Knowledge Engineering Methodology. In: D. Fensel, R.

Studer (eds.), Proceedings of the 11th European Workshop on Knowledge Acquisition, Modelling

and Management, EKAW’99. Lecture Notes in AI, Springer Verlag. vol. 1621, pp. 173-190.

Kontonya, G., and Sommerville, I. (1998). Requirements Engineering: Processes and Techniques. John

Wiley and Sons, New York, 1998.

Maiden, N.A.M., Rugg, G. Patel, P. (1999). Guidelines for better scenarios: supporting theories and

evidence. Proc. of the 10th Internat. Workshop on Database and Expert Systems Applications,

1999, pp. 352-356.

Loucipoulos, P. and Karakostas, V. (1995). System Requirements Engineering. McGraw-Hill, London,

1995.

Martin, C. (1988). User-centered Requirements Analysis. Prentice Hall, Englewood Cliffs, NJ.

Sommerville, I., and Sawyer P. (1997). Requirements Engineering: a good practice guide. John Wiley &

Sons, Chicester, England, 1997.

Weidenhaupt, K., Pohl, M., Jarke, M. and Haumer, P. (1998). Scenarios in system development: current

practice. In IEEE Software, pp. 34-45, March/April, 1998.

43

Yadav, S., Bravoco, R., Chatfield, A., and Rajkumar, T.M. (1988). Comparison of analysis techniques for

information requirements determination. Communications of the ACM, vol. 31(9), pp. 1090-1097,

1988.

44

Appendix A Overview of all components of the model

In this table, which provides a global overview of the model, it is indicated in which

section which composed process is described.

Section Processes

4 requirements engineering

5

1 elicitation

1.1 problem analysis

1.2 elicitation of requirements and scenarios

1.3 acquisition of domain ontology and knowledge

6

8

9

2 manipulation of requirements and scenarios

2.1 manipulation of requirements

2.1.1 detection of ambiguous and non-fully supported

requirements

2.1.2 detection of inconsistent requirements

2.1.3 reformulation of requirements

2.1.3.1 reformulation into informal requirements

2.1.3.2 reformulation into semi-formal requirements

2.1.3.3 reformulation into formal requirements.

2.1.4 validation of requirements

2.1.5 identification of clusters of requirements

 2.2 manipulation of scenarios

2.2.1 detection of ambiguous and non-fully supported scenarios

2.2.2 detection of inconsistent scenarios

2.2.3 reformulation of scenarios

2.2.3.1 reformulation into informal scenarios

2.2.3.2 reformulation into semi-formal scenarios

2.2.3.3 reformulation into formal scenarios

2.2.4 validation of scenarios

2.2.5 identification of clusters of scenarios

45

2.3 identification of relationships between requirements and scenarios

7 3 maintenance of requirements and scenarios specification

3.1 maintenance of requirement and scenario documents

3.2 maintenance of traceability links

